
AD-AOet 483 KRANNERT GRADUATE SCHOOL OF MANAGEMENT LAFAYETTE IN FA1/
A DECISION SUPPORT SYSTEM FOR ENERGY POLICY ANALYSIS.IU)
JUL 80a R A PICK, A B WHINSTON, G KOEHLER DAAG29-79-C-G154

UNCLASSIFIED ARO-16231.3-EL NL

KIIIIIIII

ILL8

III-I
IL

SECURITY CLASSIFICATION OF THIS PAGE (,Ie V&& Ea" 0 READ A - lTR"3TM

REPORT DOCUMENTATION PAGE BEFORE U4T 3 FOR

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT S CATALOG NUMeER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PEROD COVERED

A DECISION SUPPORT SYSTEM FOR ENERGY POLICY Technical
ANALYSIS/ 1 6. PERFORMING ONG. REPORT NUMSER

Contract No. DA79C0154

7. AUTNOR(a) S. CONTRACT OR *ANT NUMER()/

Roger A. Pick

Andrew B. Whinston A6 1- C
Gary Koehler

g. PERFORMING.ORGANIZATION NAME AND ADDRESS ,0. PROGRAM ELEMENT. PROJECT. TASK
ARSA & WORK UNIT NUMBERS

6Purdue University
Krannert Graduate School of Management 7

0o o West Lafayette, IN 47907
1I. CONTROLLING OFFICE NAME AND ADDRESS / -, 12. REPORT DATE

U.S. Army Research Office • . July 1980

Post Office Box 12211 is. NUMBER OFPAGES

Research Triangle Park, NC 2770925
14. MONITORING AGENCY NAME & AODRESS(Ifditcftflt Ire Contfllnl Office) IS. SECURITY CLASS. (of le thisPOh)

unclassified

rrfa.HDECLASSIFICATION DOWNGRADING

. DISTRI UTION STATEMENT (., itS

A pprovp r ftlt 6~se(i(~bgo

I?. DISTRIBUTION STATEMENT (of the ebettect entered In Wok"2. Ii dIfferent flow Rhp.H)

IS. SUPPLEMENTARY NOTES
The view, opinions, and/or findings contained in this report are those of

the authors and should not be construed as an official department of the

Army position, policy, or decision, unless so designated by other

documentation.

19. KEY WORDS (Continue an reveree e'it, If neeeedl7 mnd IOWenti&1 b block '"'w,)

2f. ABSTRACT (Continue on reveree side It neeessm and IdenU17 by block unl,,,)

This paper proposes a new approach to energy policy analysis. After a

brief review of energy models, a novel decision support system based upon

a modal data base, and a collection of programs which operate upon the data

base. The paper concludes with an illustrative example.

Ad 73 1473 EDITION O OSOT,
N/N 0102014,6601 5 1CUaITV CLASSIFICATION OF THIS PAGE ii01min D

* 808 1 043

A DECISION SUPPORT SYSTEM FOR ENERGY POLICY ANALYSISO

Roger A. /Pick

Andrew B./Whins ton

7 Gary/Koehler .

U.S. Army Research Office) AF*J

___ Contract No. DA79C0154

7s '),1~'- ~ (/i~.~~~>-/T0
Purdue University

Approved for Public Release

Distribution Unlimited:

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE
OF THE AUTHORS AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF
THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER
DOCUMENTATION.

ABSTRACT

This paper proposes a new approach to energy policy analysis. After a

brief review of energy models, a novel decision support system based upon a

modal data base, and a collection of programs which operate upon the data

base. The paper concludes with an illustrative example.

Acessionl For

DDC TAB
U11 71 ine,

Dit pecial

A DECISION SUPPORT SYSTEM FOR ENERGY POLICY ANALYSIS

ON MODEL GENERATION

Model building for purposes of analyzing problems that arise within
a firm or evaluating policies that have a national or world impact has
become a fairly popular activity. Several disciplines are closely
identified with modeling. The discipline of Operations Research has
traditionally been concerned with planning and operational issues
within organizations and has been at the forefront of model building.
Some well-known categories of problems solved by Operations
Researchers are inventory control, production scheduling, logistics
planning, and manufacturing planning. Techniques generally used for
solution of such problems are optimization, simulation, and
statistical methods. Many of the same techniques are used in
analyzing public policy issues. An especiaily useful overview of
energy models is given by Manne, Richels, and Weyant[22].

A BRIEF REVIEW OF ENERGY MODELING

There is a variety of modeling techniques. The following brief
survey is not meant to endorse any technique, either by inclusion or
omission, but is meant to review a few past and present efforts.
Models could be classified according to their solution algorithms.
Some use simulation. Others use nonlinear optimization. Many use
statistical or econometric techniques. Linear Programming is among
the modeling techniques. It can be used in conjunction with other
techniques or by itself. Linear Programming can be used exclusively.
For example, the World Energy Model of Queen Mary College[lO]
minimizes costs of meeting given demands from known supplies.

Intrinsic to capturing the complex information of energy policy
analysis is the necessity of building large models. Among the largest
is A Linear Programming System (ALPS)[11] which features 4000 rows and
9000 columns. ALPS is a multiperiod model of the United States,
designed primarily to study options in the planning of nuclear power
plants. The size of ALPS limits flexibility in its use. A
perspective on the data management problems involved in large-scale
linear programming in an energy context is provided by Drier[8).

Also using linear programming is the Brookhaven Energy System
Optimaization Model (BESOM), described by Cherniavsky[2]. As opposed
to ALPS, this model is static and permits tradeoffs among a variety of
energy sources.

Other models feature several LP submodels which iterate among
themselves. Project Independence Evaluation System (PIES) is an
example of such a model. PIES is described by Hogan, Sweeney, and

|1

Wagner[13]. Essentially, PIES iterates between sevzral supply
submodels which use LP to minimize costs and a single demand model
which is estimated econometrically. A similar model which involves
interacting sectors (one demand submodel and four supply submodels) is
described by Hutber[14].

Other models find equilibrium by nonlinear optimization. An
example of this is Kennedy's international model[17]. This model
features linear supply and demand functions of a variety of
commodities. Market equilibrium is computed by a quadratic
programming algorithm which maximizes net economic benefits.

Another nonlinear model is Manne's Energy Technology Assessment
(ETA)21]. It is a partial equilibrium model for the United States'
energy sector. It is a multiperiod model. Demands are estimated as
functions of GNP and energy prices while supply is found by LP.
Nonlinear optimization is used to find market equilibrium for the
economy.

Finally. simulation is often used. The formulation by Baughman and
Joskow[15] does year by year simulation.

The Energy Modeling Forum at Stanford University regularly surveys
and evaluates energy models. Through numerous publications and
meetings this group attempts to improve communication between
different research groups.

FLEXIBILITY IN MODELING

The traditional and still current approach to modeling is to
develop, for a given problem or policy issue, a specially designed
mathematical system and associated database. For a scheduling
problem, an integer programming algorithm might be used with an
associated database containing costs of running various products on
particular machines, changeover costs, and demand requirements.

Depending on the level of sophistication of the underlying software
system: a certain degree of flexibility in model formulation is
possible. For example, a scheduling system most likely will allow
arbitrary demand vectors to be input and appropriate schedules to be
developed. The number of types of machines may vary as well as the
machining requirements of the products. Invariably, the situation
that is modeled changes. Further, there is often the desire upon the
part of the model-builder to consider a variety of alternatives and to
ask "What if?" questions, especially concerning possible events in
the future.

Flexibility is an improvement in at least two ways. First, a
flexible system will save money that might have to be spent
redesigning the software. Such costs are incurred in producing new
software to accommodate a new situation, changing software to
accommodate a new situation, or just changing a model description or

~2

parameters in ways not supported by inflexible software. Second. a
flexible system will decrease the lead time between the time of

recognition of need for a changed model to the time when the new model
has been formulated and analyzed. Inflexible software results in

higher costs and decreased ability to model on demand. Inflexible
software reduces the ability to quickly answer "What if?" questions
that arise in considering various policy alternatives.

Flexibility can be increased in a modeling system in several ways.
Typically, numerical coefficients are usually not specified as part of
a model. Rather, they are stored separately from the descriptive or
structural portion of a model. Preferably, they should be extracted
from part of a larger database at the time the model is solved, where
the database holds data stored as part of a firm's or economy's
record-keeping functions. The structural model can be thought of as
consisting of pointers to numerical information within the larger
database.

Another way to increase flexbility is by upporting easy changes
to the model structure. An easy-to-use input language makes the
description of changes more accessible to a layman and easier for a
layman to use. It seems likely from a human factors viewpoint that
the closer such a language is to describing reality in a natural
language like English rather than using models expressed in a formal
language, the better that language is for describing reality and as a
vehicle for problem solving.

Flexibility can also be increased by use of a general database
system' to hold information. A database is capable of allowing one
set of data to support several different models. Also, a database can
store data as it is generated, keeping it available for use in further
analysis as needed. In other words, a database can be model
independent and can be updated.

We would like to suggest that much flexibility can be achieved in a
goal-oriented system. Such a system could be viewed as a
generalization of a database query language. In a goal-oriented
system, the user would state the information that he wishes to know.
If that information is available from the database, the user would
receivc the information immediately, as would be produced by a query
processor. If the information is unavailable, the system would

A "database" is a collection of data values and relationships
organized according to a particular physical and logical structure. A
database system is a database associated with a software utility
package which supports logical definition of a data organization,
loading and updating the database, interrogation of a database (A
0 query language" is an interactive language which may be used to
seleut and extract some part of the database for display.), and an
interface between logical structure and the corresponding physical
structure and operating environment of the database.

3

...... ..

attempt to find a means of generating the information from data and
routines that are available. The data would be generated by trying to
apply various appropriate formulation generators and solution
algorithms upon that which is already available. It is the aim of
this paper to use the above ideas along with some ideas in logic and
artificial intelligence to produce the basis of a modeling or problem-
solving system that supports highly flexible problem analysis.

OUTLINE

In broad terms, the rest of this paper outlines the foundations of
an automatic problem-solving system. The next section outlines some
formalisms from mathematical logic which can be used to describe the
behavior of a problem-solving system. Following that is a discussion
of input languages which can be used to describe problems. The paper
then moves to a discussion of the internal representation of
information in a global database. A discussion of a few
implementation issues is ne,'t. The paper ccncludes with an example
illustrating the application of the theory to a simple energy modeling
problem.

ARTIFICIAL INTELLIGENCE AND PROBLEM-SOLVING

The art of problem-solving is a very broad topic to study. It may
be useful as a point of departure to consider some current research in
Artificial Intelligence. While it may seem presumptuous to summarize
an entre discipline, in brief it seems safe to say that much of the
work in Artificial Intelligence dealing with problem solving is based
upon using First Order Predicate Calculus to represent knowledge. The
Resolution Principle is used as a theorem-prover to derive facts
needed to solve a specified problem.

First Order Predicate Calculus is a class of languages involving
predicate symbols (P,Q, etc.), function symbols (f,g.h, etc.),
constant symbols (ab,c, etc.), and variables (X,y,z, etc.). Each
First Order language also has the symbols "= () E - -" For the rest
of this paper, "first order logic" will refer to First Order Predicate
Calculus. The "terms" of first order logic are defined as follows:

1. Every constant symbol is a term.
2. Every variable symbol is a term.
3. If S, T. ... , V are terms and f is a function symbol,

then f(S,T....V) is a term.

The "formulas" of first order logic are defined as follows:

1. If P is a predicate symbol and S, T, ... V are terms.
then P(S,T. V) is a formula.

2. If x is a variable and P and Q are formulas,
then (Ex)(P),(-P), and (PvQ) are formulas.

4

The Resolution Principle is a theorem-proving technique which Is
well-suited to automation. It has the desirable properties of
Soundness and Completeness relative to the usual semantics of first
order logic: If a sentence of a first order theory is true in any
model of that theory and is provable, then the proof of that sentence
is e'fectively computable by resolution. Conversely, resolution can
only prove that which is semantically true. Information on resolution
is contained in Robinson[26].

First order logic can be used to represent facts stored in a
CODASYL[4] oriented database. Resolution can be used to infer what is
implied by the facts in a database. However, first order logic is
limited in that it can only describe those facts which hold at one
point in time, i.e. in a given state. More concretely, the set of all
possible values of all data items in a database determine all states.
A given state is defined by the values found instantiated within the
database. First order logic can express such facts as whether x=1 or
x-2, but at most one of these formulae holds in a given state. More
details on this are given later in this paper.

In developing a theory of problem-solving that is applicable to
policy analysis, it is important to model changes in the knowledge set
or database. State changes can be dealt with by using a special modal
logic of programs. The advantage of this modal logic is that the
primitives of the language include programs (or state operators) that
accept input and produce an output. The programs can be combined with
formulas of first order logic. The programs can be regression
solvers, optimization routines, or general models in economics, such
as an investment or income-consumption model.

One language suitable for this use is a deterministic one inspired
by Dijkstra's[6] development of the Guarded Command Language. The
language provides a good formalism to express relationships amongst
programs and states. However, it has limitations. For example, it
cannot express efficiency of programs. Therefore, a more powerful
language may still be required. The following is a brief description
of the language.

Let A be a finite set of deterministic programs. We call A the set
of "base programs". The base programs will each correspond to a class
of models available to the system. The Program Elements (PE) of the
language DML (Deterministic Modal Logic) are defined recursively as
follows:

1. Evcry base program is in PE.
2. For every First Order Formula P, P? is in PE

(a program which evaluates the truth of P).
3. For every o and B in PE and First Order Formula P.

o;0 is in PE (do a, then do B) and
(P?;0t--P?;8) is in FE (if P then do a else do 8).

45

V

Associated with each program will be a First Order formula called a
guard." The guard must be satisfied before the prorram will be

permitted to execute. The idea is that each guard will prevent the
system from performing nonsensical executions. The concatenation of
the evaluation of a guard and its associated program is a "guarded
command" (GC). So. for a in PE and First Order Formula Q. (Q?;) is
in GC. The DML-formulas are defined recursively as follows:

1. Every formula of First Order Logic is a DML-formula.

2. If a is in GC and P is a First Order formula, then
<a>P is a DML-formula (a terminates with P true).

3. If P,Q are DML-formulas and x is a variable, then
PvQ , -.P , and (Ex)P are DML-formula
(P or Q, not P, and there exists an x for which P).

Using DML, one can build a problem-solving system. That is, we can
determine how one might achieve a goal expressed in first order logic.
Given a goal G expressed in first order logic, we try to determine if
G is true in the current state or in some state reachable from the
current state by means of some program in PE. In other words, if the
goal G is true in the current state, as determined by resolution,. the
goal has been reached. Otherwise, one must attempt to find a program
in PE which, starting in the current state, will terminate in a state
satisfying G; i.e., find a so that <u>G.

It has been shown by McAfee and Whinston[20] that any terminating
program execution in PE is semantically the same (same input and
output relationship amongst initial and final states) as a
concatenation of base programs. Hence, the solution algorithm
consists of a tree search, starting with the goal and unwinding from
terminal states to initial states for all possible base programs until
one is found with a precondition satisfied by the current state.

This is difficult to express without additional notation. We make
use of Dijkstra's(S] notion of "weakest precondition". The weakest
precondition of a goal G and a program o, wp(cG), is a first order
formula which characterizes all possible states in which o may
initiate execution and is guaranteed to terminate in a state
satisfying G. Starting with G. one may check a program o by setting
P-wp(O,G). The next step is to determine by resolution whether the
current state satisfies P. If so. the search is complete, since G may
be satisfied by running o. If not, then the next step is to consider
P as a 3ubgoal and to try to find a program B so that wp(0,P) is
satisfied by the current state. Determining an efficient way to carry
out this search is still an area for research. Of course, ideas from
integer and dynamic programming are relevant. Another major task is
the determination of a procedure for showing in a finite amount of
time that a goal is unreachable from the current state.

Essentially, DML and weakest preconditions provide a formalism to
address the selection of a class of models or sequence of model
classes to answer a given query or data request. That is, with a
given query and a starting state of the database, the problem

e

.'p '

processing system will select a model or sequence of models that are
appropriate to solve the question, if such exists.

Dijkstra's interest is in program verification. Our interest is in
synthesizing a program from a concatenation of guarded commands to
achieve a certain goal expressed in first order logic. That is. a
problem will be stated, then translated into a formula of first order
logic. We then use weakest preconditions to unwind through a sequence
of programs and subgoals until we reach a formula which can be proven
true in the context of our present knowledge. An example that

illustrates this appears later.

PROBLEM DESCRIPTION LANGUAGE

The need for a Problem Description Language (PDL) is fairly clear.
Since problems are solved by the system automatically, there is no
need for a procedural language. Problems need only be posed. Some
sort of high level description *. nguage is necessary to facilitate
rapid description of new realities or hypothesized realities to the
modeling system. Lack of a PDL would make the system inflexible and

accessible only to a patient expert. Certainly, given the present
ratio of costs of personnel to costs of computers, the alternative of
presenting data in its raw form is acceptable only for small or one-
time runs. Perhaps a more relevant question is how high a level a PDL
should take.

Tradeoffs in PDL and Some Examples

There is a tradeoff between high level of focus and descriptive
power of a PDL. A PDL which is designed for a small class of problems
(with a low level of focus) can be made more powerful in that it can
be designed to support special structures which turn up in its class
of problems by generating such structures automatically. A PDL which
has a very high level of focus is typically harder to use and is less
powerful. The high level of focus permits the expression of many
structures. The loss of power is manifested in that the user must
specify more information for generation of a particular structure. A
PDL with a high level of focus needs more information supplied by the
user. Typical of this sort of PDL are the input languages associated
with matrix generators that are usually supplied with a linear-program
solving package. (OPHELIE/MGL[24]. MARVEL/360[23], OPTIMA MGL[25],
etc.). Some efforts have been made to battle this tradeoff by writing
special purpose matrix generators which will expect certain
forms(A.J.Clark(3]; M.J.Dillon, P.M.Jenkins. and M.J.O'Brien[7]).
Another group (S.Katz, L.Risman, M.Rodeh[1]) is doing interesting
work by writing a general matrix generator called LPMODEL which uses
abstract linear programming models specified using a description
language called LPM. LPM gains its power by expanding a few terms
into many primitives (i.e. PORT.FUEL might be expanded into NOLA.LNG
NOLA.CRUDE, ... NOLA.COAL. MOBILE.LNG, ... MOBILE.COAL.....
HOUSTON.LNG, HOUSTON.COAL.) Moreover, LPM provides standard
algebraic expressions, including sums over all expansions of a term.

7

For instance, NOLA.CRUDE + MOBILE.CRUDE + ... + HOUSTON.CkUDE. could
be more easily expressed in LPM as SUM(PORT): PORT.CRUDE. In other
problem-solving areas, we can find some very good languages for
certain purposes. SPSS features an input language that facilitates
easy description of statistical problems. Lauriere[19] has designed a
powerful language, ALICE, for describing and solving combinatorial
problems.

Desirable Properties of a PDL

We want to form a PDL which is powerful but will accept information
adapted to a variety of problem-solving techniques including linear
programming, linear regression, time series analysis, and others. It
may be necessary for the PDL to have several modules, each module
oriented to a particular part of reality or type of modeling subject.
For instance, one set of keywords would be appropriate for describing
an oil transportation system, another set would be appropriate for
scheduling a machine shop, and yv.t another set for describing input-
output relations among industries of an economy. The exact grammar
for this language is still an open issue. Essentially though, we want
to consider the PDL processor as providing a mapping from a
description of reality to records and sets in a database.

For example, consider solving an energy-related problem using
large-scale linear programming. To increase flexibility, the language
should allow a user to specify a model in parts. For instance, the
user could write descriptions which specify structural characteristics
of various sectors. This would be stored in a structural database.
Next, the user might feed in numerical information associated with the
structural information input earlier. This would be stored in a
numerical database. Later, he would specify how the sectors fit
together. Also associated with any modeling application or query will
be a "scenario" specifying what structures are relevant to the query
and which are not. A scenario will tell the system which alternate
sets of data should be considered in formulating an answer. A
scenario will provide assumptions for a "What if?" type of query. In
an energy context, an scenario might direct a model to ignore
structures outside of the United States, replacing that information
with aggregate import and export data. Another possibility would be a
scenario which limits the number of crude-producing economies.
eliminating, for example, all production from Iran. This scenario
would permit the system user to examine the effects the remaining
nations would experience from a complete shut-down of Iranian oil
production.

THE INTERNAL REPRESENTATION OF KNOWLEDGE

The representation of knowledge in a problem-solving system is not
trivial. Considering, for the moment, only computerized systems which
aid in solving linear programming problems. It is seen that this
specialized sort of problem solving is also a major data management
problem.

8

v ..

On The Need for a Large-Scale Database

As the trend continues for processors to become faster and memory
cheaper, it is becoming practical to model very large problems. This
trend is assisted by the continuous development of algorithms which
exploit special matrix structures to achieve computational efficiency
in large-scale linear program problem-solving (Lasdon[18]).

Along with computation issues brought up by large problems, there
are issues of data management. To grasp the size of the data
management problem, consider that a .1% dense matrix with 4000 rows
and 6000 columns would have 24000 nonzero coefficients (although there
would usually be only a few thousand uniquely different values).
Certainly this implies that some automation of coefficient handling is
necessary. Automation of the LP data management problem means that
the data underlying a model is assembled, transformed into a model,
and passed to a program which solves the modeling problem. These
functions are being carried out bv increasingly sophisticated systems.
Interestingly, Welch[28] has poinced out that,

"The functional characteristics of LP data management systems are
similar to those of systems referred to as database management

systems in other parts of the computer science universe. The
details of LP data management systems differ from database
management systems because of simplifying assumptions that are
made about the LP data structure and the special demands made by
the optimizers."

As we see it, the model is assembled by the PDL, transformed by a
"matrix generator" which operates upon the data-base into which PDL
input has been stored, fed by the matrix generator to an LP s-olving
routine, the results of which are stored in the database for further
queries or use by other program runs.

Whereas Welch has pointed out the similarity of LP-data management
systems to database management systems, Bonczek, Holsapple, and
Whinston[l] argue for the use of CODASYL database system to solve many
of the problems faced by LP data management, such as

Resolution of erroneous formulations.
Treatment of coefficients which are themselves functions.
Situations wherein matrices contain common data.
Storage of sparse matrices.
Usage of data to produce non-routine reports.
Usage of data for applications other than LP.

They give a database schema which solves these problems.

Our Generalization

Since it is desired for the problem-solving system to be able to
handle a large variety of problems and modeling techniques, the
approach needs to be more general than that of traditional matrix
generators. Further, the interfacing of different programs that make
up a problem-solving system should be considered. A "matrix
generator" is a program that links the knowledge representation with
an LP solver. In general, it will be necessary to have programs which

9

operate upon the database and change it to a form vsable by an
application program. Probably every application will need to have an
associated data generator.

An appropriate data generator is invoked by the problem processing
system after a model class has been selected. The data generator
produces the appropriate specific model of the class and passes the

model to a solver routine. The output from the solver will then be
stored in the database.

For each model, this data generator can be looked upon as an
analogue to a matrix generator. The problem generator produces a
particular model, say for a linear programming problem, in the

following way. The user's query and scenario are examined to
determine the relevant portions of the structural database. In the

case of an econometric input-output model, the scenario might indicate
what industries are relevant and the appropriate level of aggregation
of sectors. In that case, the scenario impliec the dimension of the
matrix to be eventually passed to the problem-solver. Next, the
stuctural database is navigated, as appropriate, to find structural
information important to the model. A matrix template is produced,

featuring flags indicating requests for numerical information.
Finally, the data requests are fulfilled, using appropriate data from
the numerical database. In cases of redundant data, the selection of
appropriate data is determined by either the user query, or the
scenario, or by using the data with the highest reliability estimate.
In cases of missing data, the problem processing system is notified of
the lack and the system will attempt to find a sequence of base
programs capable of generating the missing data.

A Modal Database

As has been mentioned earlier in this paper, a CODASYL database can
be viewed as a representation of predicates of first order logic.
Considering also the set of programs which operate upon the database,
the set of programs and data can be viewed as a representation of some
modal logic system.

A CODASYL database is a representation of information based upon
the network data model as proposed by the Conference of Data Systems
Languages Data Base Task Group[4]. An introduction to such databases
is provided by Haseman and Whinston[12]. Essentially, a CODASYL
database consists of a collection of data items with relations among
them. These relations may be one to one, in which case the items
belong to the same "record," or they may be many to one, in which case
the items belong to the same "set."

In a paper by Dutta, Gagle, and Whinston[9], each set and record is
interpreted as a predicate over the associated items. For example, a
database might contain a set which represents that CONOCO REFINES IN
OKLAHOMA, PHILLIPS REFINES IN OKLAHOMA, and KERR-MCKEE REFINES IN
OKLAHOMA. The above is a set relation between one state (not to be
confused with a database state) and three oil companies. The facts

10

n!
II

contained in that set could be restated as predicates
REFINESIN(CONOCO,OKLAHOMA), REFINESIN(PHILLIPSOKLAHOMA). and
REFINESIN(KERR-MCKEEOKLAHONA). If the names of the refineries are
stored in one to one relationships with the cities in which they are
located, some other predicates might be REFINERY(CONOCO,PONCACITY) and
REFINERY(PHILLIPS,BARTLESVILLE).

The set of all such predicates defined in the database define a
state. First order logic suffices to express the data stored in the
database at any point in time. The Resolution Principle can be used
to prove theorems of the set of facts contained in the database at a
given point in time. However, what holds in other states and the
relation among states is not naturally expressed. We need a more
expressive language.

Since programs change states, we view DML as a modal language to
model changes in the database resulting from the execution of
-programs. On a theoretical level, the problem-solving system can be
viewed as a prover of theorems (goals). expressed in first order
logic. When a theorem cannot oe proved, th, problem-solving system
attempts to change the set of axioms by changing the current state.
This is accomplished by means of programs which operate upon the
current state. The programs are to be considered as modal operators.
Each possible set or data in the database is a state. By changing the
values of database items, programs move the database from state to
state. In a similar way, the PDL processor conceptually provides a
bridge between the hypothetical reality being modeled by the user and
predicates for use by the problem-solving system.

Other Efforts

Stohr and Tanniru[271 are implementing a computerized planning
system that supports operations research models using a database
system. Their system coordinates several different program packages,
provides security measures, supports easy modification and maintenance
of models, and documents models and history of program runs. They do
this using a network data base implemented in the APL programming
language. There is a command language containing many preprogrammed
retrieval programs. Also, the programs which operate upon the data
are stored in the database system.

Stohr and Tanniru's system consists of a number of models. Each
model consists of a number of processes. A process is a program in
the context of a model. The context is defined by input and output
variables and formats f'or the program. Input to a program consists of
a problem statement (logical specification of the problem), exogenous
input (data already in the data base), and own input (usually on-line
input supplied by the user). All data for every run of a process,
including the generated solution values, are stored as a "case." A
"run" is a record of computation for a specific case of a process.
Stohr and Tanniru specify the programs and data necessary to be run
for a particular model. Our approach is to synthesize the programs
necessary to achieve a certain output by sequencing base programs and

11

providing the base programs with appropriate data.

Lauriere[19] has developed another sort of problem-solving system
oriented to combinatorial problems. His system consists of an input
language, ALICE, in which a problem is specified. The ALICE input
language allows use of sets, functions, quantifiers, and most usual
mathematical symbols for describing the problem. ALICE is a non-
procedural language. Hence, the user need not present a solution
algorithm. ALICE stores the problem description into three data
representations: a bipartite graph, a formal calculus of algebra, and
a battery of tests. Then the system works upon the problem, using
sixteen heuristics to guide it towards better methods than
enumeration.

THE PROBLEM-PROCESSING SOFTWARE SYSTEM

The earlier sections of tlis paper attempt to sketch out some
aspects of a theory of flexible ,.odel building. The purpose of this
section is to outline some of the steps involved in carrying out an
implementation. The purpose of developing a prototype system is to
allow the researchers to test out ideas and to work out details that
may not be noticed in a purely theoretical analysis.

The ingredients of a problem-solving system stated in a modal logic
framework are the various programs, variables, and first order
expressions. The data underlying a model, the structure of a model,
facts of first order and modal logic, and the programs that operate on
a model should be stored in a systematic way with all components
integrated together. This is perhaps a necessary precondition for a
usable problem-solving system. The data should be stored in an
organized fashion which facilitates easy and reliable retrieval and
updating of data. It should be accessible to a variety of models.
These goals for the system, along with the observation that most
modern LP "matrix generators" apply special cases of many of the
features of a database management system, cause us to advocate a
database approach in implementation of the system. Such an approach
will meet our needs for running linear program problems but will be
more general.

More specifically, the system will have these components:
A. A database composed of the following four parts:

1. The base programs for running models should be stored within or
be accessible from the database.
2. Associated with each such program should be stored their
respective preconditions along with their input-output data
specifications.
3. Structural information about models should also be stored. In
an energy application, a structural description might consist of a
description of ports, pipelines, and storage facilities in a
region. This information should be stored in a self-documenting
form, with long names and descriptions. It is felt that the
internal documentation provided by long names will facilitate the

12

4
, .

2I
correction of erroneous formulations.
4. The numerical data needed by all models should be stored to the
extent that it is available. Along with the data, there should be
documentation in the form of titles for each item, descriptions of
sets of items, sources of sets of items, and reliability
indicators of sets of data. This will facilitate a desired data
redundancy. Alternate data values will be stored as they are
generated by, for example, varying forecasting techniques and
assumptions and later supplemented by exact information as it
becomes available. Coordination of this data redundancy is a
major problem, but it is felt to be worth the effort, since a good
problem-solving system should support alternate assumptions.

B. Utility programs to support the Jatabase, accomplishing such
functions as backup, restore, security, or restructuring.
C. A problem processor which will direct the overall system,
coordinating model class selection and invoking appropriate programs.

At this point, more details about how a data generator interacts

with the above components !rjiald be mentired. Recall that a data
generator is a program which processes a scenario, using the scenario
information to determine the appropriate elements of the structural
database to be included in the data generated. Next, the generator
will process the structural database, producing a template for a
specific model. This template will include all structural information
but will feature data request flags in the place of the numerical
data. These data request flags will be replaced by appropriate data
as extracted from the numerical database. Finally, this is
transformed to a format acceptable for the solver routine. It should
be pointed out that there will be one data generator for each class of
model such as LP, regression, and so forth, just as each class of
model usually features one solving routine. If any data is missing,
the problem processing system is notified.

AN EXAMPLE

Illustrating the use of this theory and software will be
accomplished by a flexible modeling system for a topical concern,
energy policy analysis. A simple example is used to illustrate some
of the above ideas. The example will show the selection of base
p-ograms, the storage of the programs in the system along with their
associated guards and preconditions, the specification of a model
using a PDL, and the specification of a problem by asserting a
particular scenario and phrasing a query. The example will conclude
by illustrating the solution process for answering a query.

We will presume that the user is only interested in three classes
of models: linear programming (LP), linear regression (RG). and time
series by exponential smoothing (TS). Associated with each class is a
solution algorithm embedded into a solving program.

Also associated with each model class is a program called a data
generator. The data generator determines exactly what particular

Bak"

4

model is needed and generates that model, presenting the model to the
solving program in a format recognizable by that program. The data
generator accomplishes its task by processing the query and scenario
to determine what structures are appropriate for inclusion in the
model. It also determines the level of aggregation or detail. It
then processes the structural database, building a template for the
desired model formulation, featuring data requests in the place ofnumerical coefficients (structural data such as 0.1.-1 or anything

else invariant with respect to values in the numerical database are
included). The generator then determines, in cases of redundant data,
the appropriate set of numerical data and extracts it from the
numerical database, inserting the values into the model template. In
cases of missing data, the problem provessor will be notified. The
problem processor will then attempt to generate the missing data using
various other models.

The third component associated with each model class is a set of
preconditions and guards. A guard is a Boolean condition that must be
fulfilled before the program can be run. The truth of the guard is a
necessary precondition for the execution of the program. Ideally, the
guard permits the system d~signer to prevent execution of a program
when that execution is undesirable, nonsensical, theoretically
infeasible, or will result in some sort of nonsuccessful termination.
Some examples of nonsuccessful termination would be running an LP
solver upon an inconsistent set of constraints, producing
insignificant coefficients from a run of least-squares linear
regression, or a numerical solver of systems of non-linear equations
which oscillates about the solution without ever converging.

The guards in this example are denoted by a set of generic atomic
formulas, denoted by OK. The appropriate OK must be satisfied with a
set of data in order for a program to be allowed to run with that
data. Essentially, the idea is for OK to be a predicate which, to the
extent that it is possible, captures the intuition of the modeler.
This example will essentially assume that OK is given. Alternatively.
the problem processor could query the user as to whether or not it is
permitted to run a program upon a certain collection of data. That
is, the planning system could produce a query such as "IS IT PERMITTED
TO REGRESS ESTIMATED PREACHER'S SALARIES AGAINST THE AVERAGE RUM PRICE
FOR THE PAST 300 YEARS IN AMERICA?" The user would answer 'YES" or
"NO" and the problem processor would proceed accordingly. This answer
• ould be stored in the database thereby building up the modeling
knowledge of the system and sparing the user from answering the same
question again.

Specifically, this example will include:
OK(LP,"A","B","C","X"). which means that it is permissible to run

the LP solver upon the problem
MINIMIZE C' X
SUBJECT TO A X & B
AND X 0

and the constraints are consistent.

S'r14

OK(RGY0,X 1-,"X2 ,. "X,*.*C*) which means it is permissible
to run a regression of Y against X1Xn. storing the regression
coefficients in C and the coefficients will be significant.

OK(PD,"X1 ... ,X',"C I ... "C.""Yw) which means it is

permissible to run a prediction of the value of Y from independent
variacles X, to X. and coefficients C, to C,.

OK(TS,"X-_ , "X -
2
" , - - . , "X -- " , " X

0 ") which means it is permissible
to run time series of past values of X to achieve an estimate of the
present value of X.

It will also be convenient to introduce a generic predicate
DATA("ITEM") which will be interpreted as an abbreviation for
(EX)("ITEM"=X). In other words, DATA("ITEM") means that ITEM isi instantiated in the database.

More useful than OK are "weakest preconditions* (wp). There is a
well-developed theory for weakest preconditions and a weakest
precondition can, in principle, be generated from any FORTRAN program
and desired postcondition. However, actual computation of wp will
pose practical difficulties. We will assume that satisfaction of OK
is a weakest precondition for instantiation of the correct answer.
providing the input data is instantiated. Further research into the
practical implementation of weakest preconditions needs to be carried
out. The key use of the weakest precondition of a program o and
postcondition P. wp(a,P), is that it can be used to determine if.
starting in the present state, Cf can be run and guaranteed to finish
in a state satisfying P.

Thus we will have four base programs:

of is the collection of routines necessary to run LINEAR PROGRAM.

o = (OK(LP,A,BC,X)?;MATGEN(AB.C);LPSOLVE;STORE(X))
(-OK(LP,A,B,C,X)?;SKIP)

a2 is the collection of routines necessary to run time series.

a2 = (OK(TS,X..,Xo)?;TSGEN(X..);TSSOLVE;STORE(Xo))
, : (-OK(TSX..,X0)?;SKIP)

as is the collection of routines necessary to run regression.

-(OK(RG,Y,X.C)?;RGGEN(Y,X);RGSOLVE;STORE(C))

014 is the collection of routines necessary to predict from regression

coefficients.

I

a4 - ((OK(PD,C.X.Y)^DATA(X)^DATA(C))?;YlC1 X1 ;STORE(Y))(-OK(PDC X.Y)--DATA(X)--DATA(C))?;SKIP)

The user needs to establish a knowledge base. This will be
accomplished using the PDL for an English-like description of real or
hypothetical components of an eventual model. For instance, one might
construct the following description:

REGON MIDDLE EAST
PORT ABADAN
PORT KHORRAMSHAR

REGION ALASKA
PIPELINE ALASKAN
PORT VALDEZ

PORT VALDEZ
TANKER CLASS A
TANKER CLASS B

Here the user is defining two regions - the Middle East and Alaska.
The Middle East is described as having two ports and Alaska as having
one port and one pipeline. Each port and pipeline is described in
turn. Notice that no numbers are present. This part of the database
is descriptive.

The user would also have to elsewhere specify the numbers to the
database. He has to specify what numbers are appropriate. This would
be done using a description that is translated to part of a CODASYL
data schema. An example of how the user would specify what numbers
are associated with the structures might be via something like the
following.

PORT
CAPACITY
DEPTH

PIPELINE
CAPACITY

TANKER
CAPACITY
DEPTH
SPEED

The actual numbers might be specified using something like:

ABADAN.CAPACITY 9999 RELIABILITY 1 COMMENT ACTUAL
KHORRAMSHAR.CAPACITY 8888 RELIABILITY I COMMENT ACTUAL
ABADAN.DEPTH 7777 RELIABILITY 1 COMMENT ACTUAL
KHORRAMSHAR.DEPTH 6666 RELIABILITY 1 COMMENT ACTUAL
ALASKAN.CAPACITY S555 RELIABILITY 1 COMMENT ACTUAL
CLASS A.CAPACITY 4444 RELIABILITY 1 COMMENT AVERAGE
CLASS A.DEPTH 3333 RELIABILITY 1 COMMENT AVERAGE
CLASS A.SPEED 2222 RELIABILITY 1 COMMENT AVERAGE

These numbers are considered highly reliable (100X) and to be
either actual measured data or average data for a class. The idea of
reliability is that numerical data items may be produced in a number
of ways. They could be guesses produced by a user at a terminal, they
could be actual data copied from port records, or they could be
produced as estimates by programs in the problem-solving system.
Reliability is a number between 0 and 1 that estimates in an ad hoc
way 1 w close a number in the system is to the true number in the
world that is being modeled. Users should estimate reliability as
data is entered into the system. Programs would be mappings from one
set of data with given reliability to another set with another
reliability. This information is stored with the numbers in the
numerical database. Now, to illustrate the problem specification and
solution processes, a very simple example follows.

We shall model a simple economy with the following three
industries: STEEL, AUTO, and OIL. Later, it will be desired to trace
the effects OIL has upon the inter-related industries or STEEL and
AUTO. Our scenario will establish that these industries consume each

other's products as a part of their own production. The exact amount
is not yet a concern. This might be stated using a simple description
language in the following way:

SIMPLE ECONOMY:
STEEL USES AUTO,OIL.STEEL
AUTO USES STEELOIL
OIL USES AUTOOIL

As each industry only produces one product, the above expressions
would suggest a Leontief input-output matrix. Such a matrix might be
conceptually represented in the database as:

STEEL AUTO OIL

STEEL 1-r(1) -r(4) 0

AUTO -r(2) 1 -r(8)

OIL -r(3) -r(5) 1-r(7)

where r(j) represents a *data request' for numerical coefficients to
be found elsewhere in the database. The rest of this example will
assume that these coefficients can indeed be found elsewhere in the
database, are the same for every year, and that the merging of
structural information with numerical information can be done
automatically without difficulty. We also assume for now that all
numbers are compatable with respect to units of measure, although this
is another problem to be worked out before an operating planning

17

_7

system can work.

The user of the system also has information on the past ten years

production and prices for all these industries. He could introduce

these to the system with some expressions that might look like this:

STEFL.QTJANTITY(1970) 10 RELIABILITY 1 COMMENT ACTUAL
STEEL.QUANTITY(1971) 9.5 RELIABILITY 1 COMMENT ACTUAL

et cetera

OIL.PRICE(1978) .90 RELIABILITY .99 COMMENT AVERAGE
OIL.PRICE(1979) .98 RELIABILITY .99 COMMENT AVERAGE

where a reliability of I indicates the data is unquestionable. The
comments are an attempt to document the source of the data. It should
be pointed out that the single oil pric for each year might be
derived from other information in the database by manipulating data
for the whole economy for the whole year. However, the data is
assumed to be supplied by the user for this example.

Also, the user wishes to supply his estimates of consumer
requirements for the products of each industry. As the following
description indicates, he Feels there is almost no consumer use of
steel. Also, the user is uncertain about what the final demand for
oil will be, so he supplies two estimates and will make a decision
about which one to use later.

STEEL.DEMAND .01 RELIABILITY .9 COMMENT ESTIMATE
OIL.DEMAND 1000 RELIABILITY .5 COMMENT LOWER BOUND ESTIMATE
OIL.DEMAND 5000 RELIABILITY .5 COMMENT UPPER BOUND ESTIMATE
AUTO.DEMAND 2000 RELIABILITY .8 COMMENT ESTIMATE

In this example, it will be supposed that past behavior is a

reasonable means of estimating future prices but not future quantities
(this is meant to model steady increase in oil prices but irregular

* supply). This is expressed by the two sentences: OK("TS*.PRICES")
-CK("TS","QUANTITIES"). We will also assume that it is permitted to
run an LP solver upon the input-output matrix introduced in the first
scenario; i.e. OK("LP","I-O","DEMANDS"."PRICES","QUANTITIES").
Finally, we will assume it is permitted to regress past demand against
prices. That is, OK("RG","DEMANDS*,"PRICES","D-P COEFS") holds.

In summary, the following facts are available in this example:
OK(LP,"1-0","DEMANDS", "PRICES","QUANTITIES")
OK(TS."PRICES(PAST)"."PRICE(NOW)")
-OK(TS."QUANTITIES(PAST)", QUANTITY(NOW)")
OK(RG,"DEMANDS"."PRICES","D-P COEFS")
DATA("INDUSTRY.PRICE(1970-1979)")
DATA("INDUSTRY.QUANTITY(1970-1979)-)
DATA(*INDUSTRY.DEMAND(1980)')
DATA("I-0 COEFS(1900-2000)")

.. .

.r.

Now, for the sake of this example, it is supposed that the user
needs to forecast production quantities for all industries in this
economy for 1980, when oil output is restricted to 1100. To do this,
he will sit down at a terminal and assert the following scenario:
FOR SIMPLE ECONOMY (1980) AND OIL.DEMANDO1100
and then pose the query:
WHAT IS INDUSTRY.QUANTITY?

This query will be expanded and translated into a first-order
sentence which will become the goal Go of the problem processing
system. Specifically, the goal is
Go = (EX1 ,X2.X3)(X1 =OIL.QUANTITY(1980) X2=AUTO.QUANTITY(1980)
X3=STEEL.QUANTITY(1980)) DATA(OIL.QUANTITY(1980))
DATA(AUTO.QUANTITY(1980)) ^ DATA(STEEL.QUANTITY(1980)).

The problem processing system first attempts to prove this sentence
by resolution from the facts already in the database, supplemented by
the additional facts in the scennrio (year=198C, OIL.DEMAND91100). In
this case, this is not possible. The next step is to try each base
program in turn, checking that it is permissible to run it and to see
if it will reach a state in which the goal can be proven. We now
consider the results of these attempts.

Attempting ot first, we see that
wp(a,,Go) = (OK(LPI-O(1980), DEMANDS(1980), PRICES(1980),
QUANTITIES(1980)) ^ DATA(I-O(1980)) ^ DATA(DEMANDS(1980))
DATA(PRICES(1980))). Checking to see if this precondition can be
proven, we find that it cannot. Althought the guard OK(LP) is
fulfilled, not all the data is available, in particular the pric3s for
1980.

The problem processor now proceeds in a breadth-first search of the
tree formed by all possible base program permutations. Trying a2
next, we find that wp(O 2 ,GO) = (OK(TS,QUANTITY(1970-
1979),QUANTITY(1980)) - DATA(QUANTITY(1970-1979)). This is not
provable. In fact, this guard is specifically forbidden. Guards are
assumed as unchanging throughout all states, as long as their
arguments are constants. So, this program is forbidden for all
possible conditions. Hence, the use of f2 as the last program to
establish G0 is ruled out and the corresponding branch of the tree may
be truned.

The next program to be considered is a3. It turns out that
wp(0 3 ,Go) = OK(RG,Y,X,QUANTITY) ^ DATA(Y) ^ DATA(X). This cannot be
proven, since the guard does not hold with quantity for any X or Y
presently instantiated in the database. This is similarily true for
if4"

The tree search proceeds down one more level. We set up the
subgoal G, = wp(e1 ,G 0). Part of G, holds, specifically OK(LPetc.),
DATA('I-O), and DATA("DEMANDS"). The problem processor needs to find
an achievable state which will not change these but will also prove
DATA(PQUANTITY(1980)") ^ DATA(PPRICES(1980)n).

is

V

Again beginning a breadth search, the processor attempts at. We
have wp(*1 ,Gj) = (OK(LP,A,B.C.QUANTITY(1980)) - DATA(A) ^ DATA(B) ^
DATA(C)) - (OK(LP.A.B,C,PRICE(1980)) ^ DATA(A) ^ DATA(B) - DATA(C))).
Resolution cannnot prove these.

Trying f2 . we achieve success, for wp(Cff2 G1)
(OK(TSQUANTITY(1970-1979).QUANTITY(1980)) ^ DATA(QUANTITY(1970-1979))
0 (OK(TS,PRICE(1970-1979),PRICE(1980)) ^ DATA(PRICE(1970-1979))).
Resol:ikion proves this. Hence the query is solved by running a time
series to determine prices and then linear programming to determine
quantities. More formally, the query is solved by running a2;al. The
search tree for this solution process looks like:

I4
V1P(Gib) W prrnbs W0 o P4v

In the actual solution process, the problem processor will call 02.
The time series data generator will be invoked. The data generator
will produce a template for the data. This template could be
conceptually regarded as something like the string PRICE(1970),
PRICE(1971) ... PRICE(1979). Next. it will fill in the data
requests within the template, resulting in a string of numbers such as
.20,.23 60,.98. This string is passed to the time series solver.
The solver then uses this string as input data and produces an
estimate for the current value. This will be stored within the
database (and thus change the state) as something like OIL.PRICF(1980)
COMMENT TIME SERIES ESTIMATE.

* Control is returned to the problem processor, when then calls &t.
First. the matrix generator is called. It produces a template which
might look like:

20

Aw ",

R(8)X1 R(9)X2 R(10)X 3
1-R(1)X1 -R(4)X2 k .01
-R(2)X1 1X2 -R(6)X 3 9 2000
-(3)Xl -R(5)X 2 1-R(7) 9 1000

1X3 1100
Numerical values are then found. Since there are two possible values

for R(13), the generator must decide which to use. Although neither
is specified explicitly by the user, the lower value must be used in
order to have corsistent constraints. It would be best for the system
to bo"able to determine this, but that is a computationally difficult
task. Which data to use would probably be determined by a query to
the user.

Control then passes to the solver, which has been passed the
matrix. The solver produces solution values, which are then stored in
the database as INDUSTRY.QUANTITY(1980) COMMENT ESTIMATE BY LP AND TS.
Control is passed to the problem solver, which is now able to answer
the query, since the appropriate data now exists in the database.

The key item we wish to pc'rnt out with resnect to this example is
the ability of the system to combine the power or techniques of
database management with modeling techniques to formulate appropriate
models automatically. The system is goal-oriented, runs programs only
when necessary, and frees the user from the time consuming task of
model formulation. It responds to queries of any ad hoc nature,
producing results for the user and storing the results for use in
solving later problems. We feel that this kind of flexibility is
highly desirable in any kind of system that will aid decision making
in areas as rapidly changing as the current energy situation.

21
.4

LIST OF REFERENCES

[1] R. Bonczek, C. Hol'apple, and A. Whinston, "Mathematical
Programming Within the Context of a Generalized Data Base
Management System," RAIRO 12 (May 1978), 117-134.

[2] E. A. Cherniavsky, "Brookhaven Energy System Optimization Model,"
Brookhaven National Laboratory, BNL 19569 (December 1974).

[3] A. J. Clark, "A System for the Specification and Generation of
Matrices for Multi-period Production Scheduling Models," in E.
M. L. Beale(ed.), Applications of Mathematical Programming
Techniques, American Else- 'r (1970) 13F-150.

[4] CODASYL Systems Committet, Data Base Task Group Report,
Association for Computing Machinery (April, 1971).

(5] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall (1976).

[6 E. W. Dijkstra. "Guarded Commands, Nondeterminacy and Formal
Derivation of Programs," Communications of the ACM 18. (Aug.
1975) 453-457.

[7] M. J. Dillon, P. M. Jenkins, M. J. O'Brien, "An Approach to Matrix
Generation and Report Writing for a Class of Large-Scale Linear
Programming Models," in E. M. L. Beale(ed.) Applications of
Mathematical Programming Techniques, American Elsevier (1970).

[8] D. W. Drier, "Advances in the Technology of Large-Scale
Modeiling," in Energy Modelling, IPC Business Press, Ltd. (1974)
118-123.

[9] Dutta, Gagle, and Whinston, "Deductive Query Processing in a
CODASYL Database," paper in progress, Krannert Graduate School
of Management, Purdue University.

[1-0] Energy Research Unit, Queen Mary College, "World Energy
Modelling: Part 1. Concepts and Methods," in Energy Modelling,
IPC Business Press, Ltd. (1974) 70-90.

[11] R. W. Hardie, W. E. Black, and W. W. Little, "ALPS, A Linear

Programming System for Forecasting Optimum Power Growth
Patterns," Hanford Engineering Development Laboratory, Richland,
Wash. (April 1972).

[12] W. D. Haseman and A. B. Whinston, Introduction to Data
Management, R. D. Irwin (1977).

22

--------...

[13] W. W. Hogan. J. L. Sweeney, and M. H. Wagner, "Energy volicy

Models in the National Energy Outlook," in TINS Studies in the
Management Sciences 10 (1978) 37-62.

[14] F. W. Hutber, "Modelling of Energy Supply and Demand," in Energy
Modelling, IPC Business Press. Ltd.. (1974) 4-32.

[15) P. L. Joskow and M. L. Baughman, "The Future of the U.S. Nuclear
Energy Industry," Bell J. Econ. 7, (1976) 3-32.

(16] S. Katz, L. Risman, M. Rodeh, "LPMODEL: A System for Constructing
Abstract Linear Programming Models," IBM Israel Scientific
Center Technical Report 073 (1979).

[17] M. Kennedy, "An Economic Model of the World Oil Market," Bell J.

Econ. Mgmt. Sci. 5, (1974) 540-577.

(18] L. Lasdon, Optimization The--y for Large Systems, Macmillan
(1970).

[19] J. L. Lauriere. "A Language and a Program for Stating and Solving
Combinatorial Problems," Artificial Intelligence 10, (1978) 29-
127.

[20) McAfee and Whinston, "A Modal Logic Framework for an A.I.
Planning System." paper in progress, Krannert Graduate School of
Management, Purdue University.

[21] A. S. Manne, "ETA: A Model for Energy Technology Assessment,"
Bell J. Econ. 7, (1976) 379-406.

[22] A. S. Manne, R. G. Richels, and J. P. Weyant, "Energy Policy
Modelling: A Survey," Operations Research 27, (1979) 1-36.

[23] MARVEL/360 Primer, IBM (1968).

[24] OPHELIE/MGL User Information Manual, Control Data Corp. Pub. No.
D0001507022 (1970).

[25] OPTIMA Version 3 Reference Manual, Control Data Corp. Pub. No.
60207000 (1968).

1261 J. A. Robinson, Logic: Form and Function, The Mechanization of
Deductive Reasoning, Edinburgh University Press (1979).

[27] E. A. Stohr and M. R. Tanniru, "A Data Base for Operations
Research Models," Policy Analysis and Information Systems V4 N2
(Dec. 1980).

[28] J. S. Welch, "Answers Delayed Are Answers Denied," SIGMAP
Bulletin No. 27 (July 1979).

23

-"!

ATE

ILMEi

